WiMAX Worldwide Interoperability for Microwave Access

WiMAX is a family of wireless communication standards based on the IEEE 802.16 set of standards, which provide multiple physical layer (PHY) and Media Access Control (MAC) options. It can enable wireless usage at long distances.

Possible Uses

  • Portable mobile broadband connectivity across cities
  • Wireless alternative to cable and DSL for “last mile” broadband
  • Data, telecommunications (VoIP) and IPTV services (triple play)
  • Smart grids and metering

Long range system
QoS, base station to device
No uniform global licensed spectrum
IP based core network
Subscriber stations (SS)
Maximum distance of 30 miles
10 MBps with a range of 1 – 6 miles

What is WiMax?

WiMax stands for “Worldwide Interoperability for Microwave Access.” It is an ITU-approved, fourth-generation mobile broadband technology that attempts to mimic the abilities of Wi-Fi wireless internet, but over a mobile phone network using an open protocol (802.16m). Think of it as a patchwork of Wi-Fi hotspots that, instead of reaching for a few hundred feet, can stretch for miles and overlap, eliminating coverage gaps. It provides fixed and mobile internet access for compatible devices with less interference than traditional Wi-Fi. Theoretically, a WiMax tower could provide broadband wireless internet over a 30-mile range, though most stations currently achieve much less. Current WiMax users can realistically expect about 3Mbps to 6Mbps download speeds.

What’s the difference between LTE and WiMax?

WiMax is based on IEEE (Institute of Electrical and Electronics Engineers) standards, meaning it uses an open protocol that has been debated and approved by a large community of engineers. LTE, on the other hand, is a standard that was cooked up by the 3GPP (Third Generation Partnership Project), which is an organization consisting of wireless agencies and telecommunications companies. The 3GPP organization came up with 3G standard for GSM some years back, which was adopted by a majority of wireless carriers around the world.

However, LTE and WiMax aren’t enemies like CDMA and GSM have been. Both technologies use OFDM (Orthogonal frequency-division multiplexing), which means that unlike competing 3G networks like CDMA and GSM, WiMax and LTE are more like siblings. They aren’t entirely incompatible, so it’s easier and cheaper to design devices that incorporate both technologies.

Similarities: Both use SIM cards, both are backward compatible with existing CDMA and GSM networks, both use OFDM and MIMO (Multiple In, Multiple Out), both have similar speeds, and both are IP-based.

What about LTE Advanced?

LTE Advanced is the latest and greatest incarnation of 4G technology, and it’s widely regarded as a stepping stone towards 5G. It’s often abbreviated to LTE-A, and uses what’s called “carrier aggregation” to work properly. To understand carrier aggregation, you have to understand that phones download data through radio waves, which exist in different frequencies. 4G exists across multiple different frequency bands, and that’s where LTE-A comes in. Instead of connecting on one frequency band, LTE-A downloads data through multiple frequency bands. Read More