Ethernet

Ethernet is a family of computer networking technologies commonly used in local area networks (LAN), metropolitan area networks (MAN) and wide area networks (WAN). It was commercially introduced in 1980 and first standardized in 1983 as IEEE 802.3, and has since been refined to support higher bit rates and longer link distances.
Wikipedia

IEEE 802.3

IEEE 802.3 is a working group and a collection of Institute of Electrical and Electronics Engineers (IEEE) standards produced by the working group defining the physical layer and data link layer’s media access control (MAC) of wired Ethernet. This is generally a local area network (LAN) technology with some wide area network (WAN) applications. Physical connections are made between nodes and/or infrastructure devices (hubs, switches, routers) by various types of copper or fiber cable. 802.3 is a technology that supports the IEEE 802.1 network architecture.

Relation to OSI Model

cisco.com

Ethernet data transfer rates have been increased from the original 2.94 megabits per second (Mbit/s)[3] to the latest 100 gigabits per second (Gbit/s). The Ethernet standards comprise several wiring and signaling variants of the OSI physical layer in use with Ethernet.

Systems communicating over Ethernet divide a stream of data into shorter pieces called frames. Each frame contains source and destination addresses, and error-checking data so that damaged frames can be detected and discarded; most often, higher-layer protocols trigger retransmission of lost frames. As per the OSI model, Ethernet provides services up to and including the data link layer.

Since its commercial release, Ethernet has retained a good degree of backward compatibility. Features such as the 48-bit MAC address and Ethernet frame format have influenced other networking protocols. The primary alternative for some uses of contemporary LANs is Wi-Fi, a wireless protocol standardized as IEEE 802.11. Read More

Wikipedia

Share