Soft actuators are being developed to handle fragile objects like fruit harvesting in agriculture or manipulating the internal organs in biomedicine that has always been a challenging task for robotics. Unlike conventional actuators, soft actuators produce flexible motion due to the integration of microscopic changes at the molecular level into a macroscopic deformation of the actuator materials.

PneuNets Bending Actuators

PneuNets (pneumatic networks) are a class of soft actuator originally developed by the Whitesides Research Group at Harvard. They are made up of a series of channels and chambers inside an elastomer. These channels inflate when pressurized, creating motion.

The nature of this motion is controlled by modifying the geometry of the embedded chambers and the material properties of their walls. When a PneuNets actuator is pressurized, expansion occurs in the most compliant (least stiff) regions. Read more on Soft Robotics

Shape memory polymer (SMP)

SMP actuators are the most similar to our muscles, providing a response to a range of stimuli such as light, electrical, magnetic, heat, pH, and moisture changes. They have some deficiencies including fatigue and high response time that have been improved through the introduction of smart materials and combination of different materials by means of advanced fabrication technology. SMP exhibits some rewarding features such a low density, high strain recovery, biocompatibility, and biodegradability. Read more

Evolution of 3D printed soft actuators


Developing soft actuators and sensors by means of 3D printing has become an exciting research area. Compared to conventional methods, 3D printing enables rapid prototyping, custom design, and single-step fabrication of actuators and sensors that have complex structure and high resolution. While 3D printed sensors have been widely reviewed in the literature, 3D printed actuators, on the other hand, have not been adequately reviewed thus far. This paper presents a comprehensive review of the existing 3D printed actuators. First, the common processes used in 3D printing of actuators are reviewed. Next, the existing mechanisms used for stimulating the printed actuators are described. In addition, the materials used to print the actuators are compared. Then, the applications of the printed actuators including soft-manipulation of tissues and organs in biomedicine and fragile agricultural products, regenerative design, smart valves, microfluidic systems, electromechanical switches, smart textiles, and minimally invasive surgical instruments are explained. After that, the reviewed 3D printed actuators are discussed in terms of their advantages and disadvantages considering power density, elasticity, strain, stress, operation voltage, weight, size, response time, controllability, and biocompatibility. Finally, the future directions of 3D printed actuators are discussed. Read more

Zolfagharian et al. (2016). Evolution of 3D printed soft actuators.